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The operators 1h, 12h are "operator" based interpolation and pro-

Jectlon operators while the smoothers are the damped Jacobi iterations with

parameter a > 0

ie determine the exact rates of convergence for the "two-grid" scheme

and upper bounds (<1 ! ) for the multi-grid schemes. Experimental results

are discussed.
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ABSTRACT

( -- p

In an effort to understand certain ideas and concepts associated with

multi-grid iterations wrgive an in-depth study of a particular simple

problem. We-consider a standard finite-difference system associated with

_09 two-point boundary value problem.

-(pu')+ bu' + qu = 0, u(O) = u() = 0

Theopeatos 2h hThe operators I h , l2h are "operator" based interpolation and pro-

jection operators while the smoothers are the damped Jacobi iterations with

parameter a >0 .

We determineithe exact rates of convergence for the "two-grid" scheme

and upper bounds ( <1 ! ) for the multi-grid schemes. Experimental results

are discussed.
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1. Introduction

The multi-grid approach for the numerical solution of boundary value prob-

lems for elliptic partial differential equation is proving itself as one of

the fastest and most efficient methods - see [], [3], [4], [5], [6], [17].

Moreover, there are a large number of theoretical papers on this subject -

see [2], [3], [6], [7], [8], [9], [10], [11], [13], [16]. Nevertheless, it

seems (at least it seems so to these authors) that we are just beginning to

understand this powerful idea. In particular, there are questions of: how

do we choose the interpolation and projection operators?, how do we choose

the smoothing operators?, what do we mean when we say smoothing? and ...?

This report is a reflection of our efforts to understand and appreciate

the theoretical insights of Frederickson [7), McCormick and Ruge [13],

McCormick [14], [15] and Greenbaum [8] and apply those ideas to extend the

explicit convergence rates given by Hackbusch [12, (2.21)], [11] for the very

* simplest problem

u1 = f, u(O) = u(1) = 0

Specifically, we consider the two-point boundary-value problem
1

(1.1) Lu: = -(pu')' + b(x)u' + qu = f, 0 < x < 1

(1.2) u(O) = u() 0

where p(x), b(x), q(x) are smooth functions and

(1.3) p(x) > pO > 0, q(x) > 0

In section 2 we describe a basic approach to multi-grid which is based on

the ideas of Frederickson [7], McCormick and Ruge [13] and Greenbaum [8].
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In section 3 we describe a discretization (finite-difference) of the

problem (1.1), (1.2) and a specific two-grid iterative procedure for

its solution. In section 4 we describe the class of damped' Jacobi

"smoothers" and use our knowledge of these schemes and their eigenvectors

1h ad2hto describe the basic spaces: Range Ih = R and NuZlspace 1h Lh

In section 5 we obtain estimates for the norm decay of a single step in a

two grid scheme for two different norms. In addition we obtain a better

estimate for the norm decay for all iterative steps beyond the first in

both these norms. Interestingly enough, this estimate is the same in both

norms. This latter result is an improvement over the estimates of Hackbusch

[11], [12].

It is well-known that the problem (1.1), (1.2) is equivalent to a

self-adjoint problem. Moreover, the discretization (3.4) is also equivalent

to a symmetric problem. In fact, our multi-grid treatment of this problem

is equivalent to the "same" multi-grid treatment of this symmetric problem.

This equivalence is not needed for the discussion in sections 1-5. However,

as we turn to the extension of a two-grid scheme to a true multi-grid scheme,

we require this information. In section 6 we demonstrate this equivalence.

In section 7 we describe the n-grid "saw-tooth" multi-grid schemes and give

a theory (closely related to a theorem of McCormick [14], [15]) which de-

scribes the rates of convergence of this scheme. In addition section 7 con-

tains some experimental results.

ae

a%

I%
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2. A Basic Theory

The theory presented in this section is based on the work of

Frederickson [7], McCormick and Ruge [13] and Greenbaum [8]. We consider

a finite-dimensional linear space Sh and a problem

(2.1) LhU = f; u, f E Sh

where

Lh: Sh Sh

is a linear, nonsingular operator.

Multi-grid is an iterative method for the solution of this problem.

The basic idea is to utilize another finite dimensional space S with
2h

(2.2) dim S2h < dim S

Hecewereureopraor 2h h
Hence we require operators Ih ' I2h which enable us to effect com-

munication between these spaces. In particular, we have

2h
(2.3a) I h: Sh S S2h (projection)

(2.3b) I2h: S2h Sh (Interpolation)

2h h
where I h 12h are linear operators. We also require a "smoothing"

operator Sh and a "coarse grid" operator L2h. The smoothing operator

Sh is an affine operator which has U, the unique solution of (2.1) as

its only fixed point. That is

(2.4a) ShV Ghv + f

A ., .',',- ,, ' ,,.,, , . ..""-"" -"" " ' ' "-."", , ""w . - - - . . . . , . . .,, . ,.... , ""''"'
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where Gh: Sh - Sh is a linear operator and if U is the solution of

"• (2.1), then

.1. (2.4b) ShU = U

Finally, the "coarse grid" operator

(2.5) L2h: S2h ) S2h

is a linear, nonsingular operator taking S2h onto itself.

Let U Sh  be a guess for the solution U of (2.1). Set

0 0
(2.6a) =7 U

(2.6b) U = ShUO

(2.6c) =U - U h(U-u =Gh 0

(2.6d) r = f - LhU = Lh(u 'U) = Lh

(2.6e) R 2Ihr

A Solve

(2.7) L2h E R , i2e., h - hR

Set

I h hA - h(2.8) U + I E h-h

0 1U:U

and return to (2.6a).

1.1
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Remark: While one might say that we have merely described a two-grid

scheme, the iterative scheme described above does, in fact, describe

"multi-grid" schemes. The point is that the "coarse grid correction"

operator L2h may be a complicated procedure involving more grids.

The work of Frederickson [7], McCormick and Ruge [13] and Greenbaum

[8) suggests we study two fundamental subspaces. These are

h
(2.9a) R = range of Ih2h

(2.9b) = nullspace of Ih Lh

In addition we consider a special two grid "coarse grid" operator

" ^ 2h. h
(2.10) L 2h = Lh L I2h

,,

This particular operator is the "Galerkin choice" and is "optimal" in a

certain sense. This fact is emphasized by the following

Lemma 2.1: Consider one iteration as described above by (2.6a)-(2.8) with

(2.11) L2h L2h

Suppose -E R That is, suppose there is a w(2h) E S2h and

(2.12) = (h) = W(2h)

22hw
2

SD

Then

(2.13a) = w(2h)

0".
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S and

U U.

Hence, the problem is solved.

Proof: From (2.6d) and (2.12) we have

r = Lh L LI h w(2h)

Thus

R I 12h r (I2h LhI h )w(2h)

That is,

A

(2.14) R L Lw(2h)

Hence, from (2.7) we have (2.13a). Finally, (2.13b) follows from (2.8)

and (2.12).

Now suppose we can write S h as the direct sum (not necessarily orthog-

h 2honal) of Range (I 2h ) and Nuilspace (I h L h) . That is, every grid function

6w(h) E S h can be uniquely written as

(2.15a) w(h) = I hw (2h) + w (h)

1 where

.5(2.15b) 2h 2 h'h Lhw h

*Let us apply this decomposition to the intermediate error (h) .Then



(2.16) (h) =h 1 (2h) + 1(h)
12hW2h +E()

Thus

1h w
1 h 1

r Lhl (2h) + Lh (h)

and

R = I 2h = [IhLhI h]W (2h)

Using lemma 2.1 we see that

* (2.17) Ul = i + h Wl(2h)

and hence

S- u-u 1  u - U- Ihw1( 2h)
'2

,That is

1 I1h1

E = E (h)

Thus, the convergence of the process can be tested by

II E (h)i ll °J.

where

* 1 2

E 1 (h) E Nullspace(I2 h Lh Lh)=

and the norm involved is any norm. The authors mentioned above all dealt

with self-adjoint Lh and assume that

*N- .% % . . . . . . . . * - . , . . . . . . . . . . . - .% . . . - - -% % % -% %
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12h h T
Ih C( c( 2h)

In this case it is an easy matter to see that the Range (h and2h
Nullspace (IhLh) are Lh-orthogonal complements of Sh In the general

case we must assume the decomposition (2.15a). However, it is a simple

counting argument to see that (2.15a) is valid if L2h is non-singular and
hi) rank 12h = dim S2h

ii) dim Nulispace IhLh > dim Sh - dim S2h

Recall that Lemma 2.1 implies that the zero vector is the only vector common

to both subspaces.

.4

4°°
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3. The Discrete Problem

Let an integer N > 1 be chosen and set

(3.11(3.1) h = 2(N+I) = (2N+l)+l

and let the fine "grid points" be given by

(3.2) xj(h) = jh, j = 0,1,2,...,2N+2

We define a difference operator Lh by
0h

(3.3a) [LhUk = -akUk_ 1 + akUk - YkUk+l

where

a k  + h

'4..
°°h

(3.3b) = Pk+ + Pkh+q

[k+ b~
Yk LP2  2h1

Then Lh is a consistent approximation to the operator L described in (1.1).

We assume h is so small that ak > 0, > 0 for all k.

We are concerned with the system of linear equations

(. [LhU]k = fk' k = 1,2,...,2N+l

UoU 2 N+2

444°
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We shall solve this system with a particular multi-grid iterative scheme.

Consider a course grid on which we have a mesh spacing of 2h and the

course grid points are given by

Xk(2h) = 2hk, k = 0,l,2,...,N+l

We have a space Sh of grid functions {Uk(h); k = 0,1,...,2N+2} defined

on the fine grid, and we have a space S2h of grid functions

{Uk(2h); k = 0,1,...,N+l} defined on the coarse grid. Our first step is

hto construct the interpolation operator I which maps S2h into Sh,2h2hh

i.e.

h
I2h: S2 h - Sh

Following the experience of Dendy [4), [5] we choose the following mapping

(3.5a) [I hU(2h)]2k = Uk( 2h) (common points)

and

(3.5b) [I hU(2h)] 2 kl = k [ 2k.IUkl(2h) +y2klUk(
2h)] (new points).

2h )]2k-1 02k-i klkl +~-~

This choice of "operator" interpolation may be described in the following way:

If the physical point x.(h) of the fine grid is also a physical point of

the coarse grid, i.e. if j is even, say j = 2k, we set U.(h) = Uk(2h)

to be the same value as the coarse grid function assumed at that point;

that is, (3.5a) holds. If the physical point x.(h) of the fine grid is

not a point of the coarse grid, i.e. j is odd, say j = 2k - 1, we re-

quire that

(3.5c) {Lh[I2hU(2h)]} 2k1 = 0

5%

4
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We formalize this remark as

hLemma 3.1: Let this interpolation operator I h be defined by (3.5a),

(3.5b). Then a function U(h) E Sh is in the range of I h if and only if

[LhU(h)] 2kl = 0, k = 1,2,...,N+l

We now turn to the construction of a projection operator Ih Sh 2h S2h

We define

2h2k (hk

(3.6) [I hu(h)]k= 1/2 I2k- (h) +u(h) + 2 U2k+l •
[62k-l 2k-i 2k 2k+l k

Remark: if b(x) = 0 and the operator L is self-adjoint then

Ok= Yk-l

and we see that

(37) 2h. h T(3.7) Ih c[12 h
]

As we have said in section 2, the relationship (3.7) between Ih and Ih

h 2h

is the "variational choice" and is frequently recommended for self-adjoint

problems - see [13], [7], [4].

For the purposes of this exposition we take the optimal choice of

"coarse grid correction", i.e.

A 2h h
2h 2h h Lh 2h

NJ.
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Remark: A direct computation shows that
.1" .o.

(3.8a) [L 2h U(2h)] k -a k( Ukl + ak Uk -Yk k+l

where

. (3.8b) (2) 1 O 2k1k-

I f 2k a2k-1 02kck+
*(3.8c) () ' k" 2 -k1

(2) 1 [2kY2k+1-]

(3.8d) Yk 2 2k +1

Hence, L2h is again a diagonally dominant three term operator of the

form (3.3a).

Now we need only describe the smoothing operator which we do in the

p. next section.

S.,..,, , ., -,,-,'< -,-,..,: .. , ,:v .,'-.-. -.,.. .: . -,,.; ':' '; L; : ;: ,,:.,: '?:; .z .,,
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4. Jacobi Iterative Schemes

A direct iterative method for the solution of (3.4) is described by

a splitting of the operator Lh . We set

Lh =M -N.

0
Then, given a first guess U we define successive iterates by the formula

(4.1) MUj = NUj + f

The convergence of this scheme is determined by the eigenvalue problem

(4.2) XMU = NU

As is well known, the scheme (4.1) is convergent iff

maxxlj < 1

It is easy to verify that: if (X,¢) are an eigenpair of (4.2) then

(4.3) Lh¢ = (I-X)M¢

In this section we are concerned with a particularly simple class of

such iterative methods, the Jacobi methods. We set

(4.4a) M = (l+a)B , a > 0

where

(4.4b) B = diag( k).

Vk

L.,*
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In this case we may rewrite (4.1) as

+= U + I B- 1 (f-LhUJ)

When a = 0 we call this scheme the Jacobi method. When a > 0 we call

this scheme a damped Jacobi method. In these cases we are able to give

a relatively complete discussion of the eigenvalue problem (4.2). We have

the following facts.

i) The method is convergent for a > 0

ii) Let a = 0 . Let (ji,o) be an eigenpair, i.e.

1BO (B-Lh)0 .

Let $ be defined by

.4.' k+l
(4.6) = (-1) 0

Then (-i.,$} is also an eigenpair. The eigenvalues p are real

and distinct, furthermore: as h - 0 the {i} fill out the interval

[-l,l]. For completeness we repeat the basic relationship between

0 and O . Namely,

(4.7a) if k is odd: k

(4.7b) if k is even: =

Since dim Sh = 2N+l there is a single eigenvector associated

with the eigenvalue i = 0 . This eigenvector satisfies

(4.8) 02k =0o

.2k

..

45,

,,. ; ''W,-,,. . B.-.-.- -" -.-.- -B". .. ' ". ".'. '. -" '. .""'.". :- .' "' " -''' ."
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For a > 0 there are corresponding eigenpairs 0Ac>, (X,O) where

p and c are the eigenfunctions described in (2) and

I~o . j+a a-1
i ~ ~~(4.9) = ' la

l+a 1 +a

the eigenpair (0,;) corresponds to an eigenpair (X, ) with

a
+a

* We now turn to the determination of the three important subspaces

Ra" I h 22h Nulspace 2hRa 2h' NulZspace Ihh Lh

where the operators hare given by (3.5a), (3.5b) and (3.6)12h' lh a

. Lemma 4.1: Let (1i,0) , (-i,$) be the two eigenpairs described in

(ii) above with v # 0. Let

(4.10) € = +p)0-(0-0)0]

2h
then €~ ERange I h " Further, since the vectors €~ corresponding to

different pairs (, , (-Io,)) are linearly independent this construc-

tion provides N linearly independent elements of the Range I h
2h"

Proof: Using (4.3) we have

"O Lh$ = [(l+u)(l-u)Bp - (l-u)(l+i)B >]

L (l+p)(1-p)B[q-$] .

Thus, the lemma follows from Lemma 3.1 which characterizes Range (Ih
2h

and from (4.7a), (4.7b). m

_*"

a . s.-.*



16

Lemma 4.2:

i) For all choices of a > 0, the vector B (associated with p=0)

is an element of uZZapace I2h and hence (4.3),implies that
h

is an element of NuZispace I'h Lh"

ii) Let <uo ), (-p,$) with p # 0 be the two eigenpairs described

above. Let

(4.11a) T = B[(-0) * (+ 0]

2h
Then ip is an element of Nulilpace of Ih and (4.3) implies thatThen

(4.11b) ( c+$) E Nullspace of I hLh h

Further, since the vectors T associated with different pairs

, -- ,$) are linearly independent, we have N linearly

independent elements of this nullspace and N linearly independent

vectors of Nulopace I 2hL The vectors B;, ; provide one morevecorsofNulspae h h.

independent vector of each of these subspaces.

Proof: The result follows from a direct computation using (3.6) and the

defining eigenvalue problem. I

h an
Corollary: There is a unique decomposition of Sh into Range I2h and

Nulspace 
(Ih Lh.)

Proof: Since Lh is non-singular we have shown that

hdim Range l2h > N

2h 2
dim h=2+1

dim Nulispace (Ih Lh) = dim NuZlIspace (I h) > N + 1

Sdim S h = 2N + I

4. Ths the corollary follows from the observation that Lemma 3.1 implies

that these two subspaces have only the zero vector in common. m
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5. Some Estimates

Let a > 0 . We take as our smoother m applications of the corres-

ponding Jacobi iteration. That is, given U0 = uO(h) we obtain

(as in 2.6b) from the formula

(5.1a) MU = NUj + f , j =

(5.1b) =P

First let us consider the special vector P with its associated eigenvalue

a
l+a

Suppose

= - U0 =

then

S= CXmB$

S. Lh : C~mB

and, using Lemma 4.2 we see that

2h
I hLh = 0

Hh h

Hence, in this case, for any norm
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a m
(5.2) 0 1+a

We now consider two norms defined on Sh . Let w, v E Sh be of the

form

N N
(5.3a) w = Z Aj + A + IA

j=l " =,^

N N

(5.3b) V= NIC o + C + I E.j .

Define

N N
(w,v) 0  i A.C. + AC + = A.C'-j=1l j=l j

?.
N

wv = AC.(1-V) + AC+j. j= 3 j3lj=

Lemma 5.1: Suppose
0  

0UA

(5.4) 2 = c + 2

* I.-,, ,, .'_ ' , w'.' ' '- ,- ' i ' ' (,', ,1 ,% A(-. .) +' A'W ,_' +",,, '. , . , . . ,"-' " %.
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and let 1 be defined by the two-grid iteration scheme. Then

1 2a o110 p+a2m()2 +(a-,2m
1 +a + a (lfJc,d fE 110 L

1 2

(5.5b) max =1/2 p (-' (1 ) +(a.U) 01)
c,d cI Il2 L +a ' 1+a J

Proof: From (5.4) we see that

=cXmq + drmo^

Following the theory of section 2, we write (see 2.16)

(5.6) 2h w (2h) + E(h)

9' where

h 1
I'h LhE l(h) =0.

We claim that

(5.7a) Ihw (2h) = 2 [d l

,. (5.7b) = cXm(l-,)+dm(l+) +
2D4

To verify this we need merely verify that the sum of the right-hand-sides

of (5.7a) and (5.7b) is Z , and use (4.10) and (4.11b).

C;.

0'#.
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Having verified (5.6), (5.7a), (5.7b) we proceed as follows

122
(5.8a) E ig = I/2[cXm(-) +d xm(l+i)] 2

(5.8b) I E0  c :2 + d2

0j
(5.9a) II El1 = I/2[cXm(l-p) +dxm (1+)]2

(5.9b) 11 E 0 2 = c2(1-j) + d2 (+V)

Thus, a simple argument shows that

1 2

Im E I 2m

(5.10b) sup 1 1/ 2 [X2m(l-) +x 2m(l+2)]

EI
Using the basic formulae (4.9) we obtain

1 2

'"~ p '0:i2 +a 2m(_, +(a-p 2m
" , 8sup 2 i-)( - ) t (l+1

11 /2 T+a 2m1 au2

Thus, the lemma is proven.

*1*-

I..-'.: ';.° ..- -- .;.; ; '; > . ....- :.2 .. ... . : : ... :...:.2. :. ; ....... 2.: .. ?.i
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Theorem 5.1: In the general case we have

* 2
(5.11a) 11 J r+a 2m O-)2 + (ai-) 2m( 2 1

t11u~ IE01 1+ 12ji~- lj +a 1 i

E 0l+a 1+a (+

Proof: The Theorem follows immediately from the previous lemma.

We observe that (5.11a) is precisely the formula Obtained by Hackbusch

[12, (2.21)) in the special case p(x) = 1, b(x) =q(x) =0 and a =1

To make a complete identification we merely set

(5.12) a +11

However, while (5.11a), (5.11b) describe the worst case decay in one multi-

grid iteration in a 2-grid scheme, it does not give the estimate of real

interest. From the discussion in the proof of Lemma 5.1 - and (5.7) in

'44particular - we realize that, even though the constants c and d of (5.4)

*0 k
may be arbitrary for e that is not true for E k > 1I We have

(from (5.7b))

(5.13a) 1 a+$
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wi th

Y cAm(l-p) + dm(l+p)
j.\= 2

Therefore, following the argument of Lemma 5.1,

! ~~~~~(2) : [mlc r ~li)eb$'I_

Hence
(12 = (1)

Itil 2 Il G

IIeii 01 lie I lls 202

(2) 2 E:(2) 2 = [XM(1..) +Am(l+P4]2C 0 I1 _ [m l )+J ]

and for j = 0,1 we have

11P4)li 1 m() 2(5.14) .~ 4 [,~~)+mlu]
P ()llj2

Thus we have proven

Theorem 5.2: In the' general case, for j = 0,1 and all k > 1 we have

I. (kl lj < sup _.Pm-) +xm(1+11)12}
(5.15) IUI {(k) 2 4

Remark: The distinction between Hackbusch's result (5.11a) and (5.15) is

non-trivial for large m. We have, as m

(5.16a) Iello (l+a)
1. -1 0 em (5.11a)li II emll

1

i, - ,- i . ,• , ., . , ," ,, W % - .," " "' " ' ' ' " ' ' ' ' '- - ' ' ' ' " " "'"'-''.' ''. y''.' ''.''.'',''y' .''.'-'- .' ... . . .,.. , . , . , , . . , . . , , , , . .
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'.

while

(5.16b) 1 +a 1

e k 2 em (5.14)

Thus for k > 1 we have

I,/11 e k+ll, k ""

(5.17) I e - .7071
(1 e 110 /11e 0I110

.--a

..'

":.'0;J-'.,.'. ,,'.",'.,; * 
; C . ** . : X . ;
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6. Symmetrization

Consider the difference equation (3.4) described by (3.3a), (3.3b).

Let

(6.1) Uk = dkVk

where the coefficients dk  are computed recursively by

(6.2a) do =1

(6.2b) dk+ 1 = dk , k=O,l,...

then (3.4) becomes

"ckdk-1Vk-l + 8kdkVk " Ykdk+lVk+l =f

or

(6.3) -a (dk l +v (dk+l I Vk+l dfk
kI Jk l -1+kVk Yk1

that is

(6.3a) L = a kVk1 + akVk - Ykfk+1 =

where

--6

- p -, P p
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d

k k
4..,

r1
.44

d a
(6.4b) A k+ ak+1 - _ _ '"

k kd k Y 'ykak+l
k kk

Hence

A

(6.5) k & R
ak Yk-l

and L h is given by a symmetric operator.

We now turn our attention to the Jacobi iterative schemes of section 4.

We have

(6.6) u = u + - (fL UJ"
4 l+a (LhU 3

The change of variables (6.1) is conveniently described by

(6.7a) U = DV

where

(6.7b) D = diag(d1 ,... 9d2  " -

With this change of variables the iteration (6.6) becomes

+1 D-1-1 (f.LhDV)J+1 -+T+a h

But, since D and B are both diagonal matrices, we have
1~ B-I (DIfhV ]

(6.8a) V V + -L )
1+a h

-

I

-"

, ," ' "V'", ", ". ","".-". .- ,,"" ' .' .. .- .... 'w" ." -"" "' " "' "- -. ". "- " -"" '€ " " """ "" " " " " • •" " " •" -", .. . . . .
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where

(6.8b) D'f = f .2N+I)T

Since B is also the diagonal of Ch (6.8) is precisely the same

Jacobi iterative scheme for modified symmetric equations.

Now let us study the effect of this transformation on the two-grid

iterative scheme. We compute

D 1 [I2 1  k

Imagine U(2h)k = d2kV(
2h)k is given in S2h . Then, from (3.5a)

(6.9a) d-1[1 hU(2h)]2= V(2h)k,

(6.9b) 1- h =(h] (h
dk 2 I 2h(h) 2k-2  (hk-l

Thus (3.5b) yields

d1[1h 1(h) d- (2h) d-1 - d (2)
2k - h 2ld2- 2-I 2k-2Vk-l +y2k-l 2k-I 2k kE2k lv(h1
2,kd1.I[hU( 2h))2kl -l 2k

)" [2k-I V(2h)k- +Y klV(2h)k]

* Thus, with this change of variables the mapping 12h of our original
Ahh

unsym"etric problem becomes I2h5 the appropriate mapping associated

with the new symmetric problem.

S.

-,4

,%."
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Finally, let us consider

dk-I I2 hU(h)]
2kh k

A straight forward calculation verifies that

1- rIhl I 2h 2hh 2

d[2kD h UJk 2 V2k- (h) +V2k(h) + Y2h V2k+l
]

2 ke 2k-l 2k-Il

Thus, following the remarks of section 3 [see (3.7)] we see that

1 2hi - -2h

the appropriate projection operator.

.For our purposes, the major significance of these calculations is that

the "Il" norm introduced in section 5 is the "operator norm" for the

symmetric problem. Hence, we have a norm which is well-defined on all

spaces Sh.
J

,r 3"
'S j , ° - , . • . . . .. ., , , • - . . . - • . . . . ° . , . q ,

0. ,".">.,'e, , ' .- '.,,. .:-. ' ., .: , .. '", '*. -' .". . ',- - . .. ". ." .
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7. Multi-Grid and Experimental Results

The results of the previous sections, and Theorem 5.1 in particular,

provide exact estimates of the decay of the error (in two norms) in one

iteration of a 2-grid scheme - in the worst case.

Since L2h is again a three term (diagonally dominant) operator of

the form (3.3a) - and given specifically by (3.8) - we may apply our

multi-grid approach inductively as follows: Assume that the n-grid multi-

grid scheme based on "smoothing" with m applications of the damped Jacobi

iteration with parameter a is defined. Suppose

(7.1a) h= n>2,
2n

where H is of the form

(7.1b) H 1 > 1

We wish to solve (3.4) on the h-grid. The iterative scheme is given by the

following inductive description.

(1.) On the h-grid (h =2 nH):

(a) Let U0  be chosen.-

(b) Apply the damped Jacobi (with parameter a) iteration

m times to obtain U.

(c) Form r(h) = f - LhU.

(2.) Transfer Information:

(a) Set r(2h) = Ihr(h)h

(3.) On the 2h grid:

(a) Consider the problem

L2hU( 2h) : r(2h).

['. . .-. .-...- '.'. %-.*.. ,', - , A -. .; - - .....-... ¢# ..-.-.- .-.- .- ,
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(b) if 2h H, solve exactly.

(c) if 2h < H, set u (2h) = 0 and apply the

n-grid iterative scheme (based on smoothing

with m applications of the damped Jacobi

iteration with parameter a). Let U (2h)

be the result of this step.

(4.) Transfer Information:

(a) UI  + I 2hU (2h).

(b) U1  U0

Return to l(b).

In the multi-grid jargon this is the so-called slash or sawtooth cycle

which we indicate schematically as:

h o o h
2 m "smoothings" o h

4h 0 m "smoothings" o/4h

2H

Note: There are no smoothing steps during the transfers from coarse to fine

grids.

McCormick [14], [15], calls such a multigrid cycle a M\h cycle. When
\h5

the smoothing occurs only on the way "up" the cycle and the errors are

merely restricted on the fine to coarse transfers, he calls the cycle a M/h
./h
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cycle. For the symmetric case, using Richardson's iteration, see [14],

he shows that

(7.2) 11 M/hil1 1 IM~hlll

In discussing the symmetric M/h cycle he obtains the following estimate.

- Let

(7.3a) e 0 no + IhOW

I2hW

Suppose at, 0 < a < 1 satisfies

0(7.3b) I[GEO 1I2I<al. 0 11 i 2 +11h 012 0e

I I.h

then

(7.4a) ai/hl <

5S that is:

(7.4b) 11 1 1 ( 1E 0

Since our Jacobi iteration is not all that different than Richardson's

k iteration it is not surprising that a similar result holds in our case.

71Indeed, if one applies his argument to our multigrid cycle, i.e. the Mh
I'.\h

cycle, one gets the following result.

'6 Lemma 7.1: Consider the symmetric case and suppose

(7.5) uG 1  < 1

Let

h
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Suppose C, 0 < a < 1 satisfies

(7.6b) II nil, + 1IIh2h W I_ .II I°l.

Then

(7.7) %IMhl

on the coarsest grid,

(7.8a) %IMxhl = 0<

Assume that

(7.8b) 111\h4 l <_ h

that is:

(7.8c) II M\2hw(2h)-w(2h)l < A l' ,(2h) 11,

Then

(7.9) IIelii = 2InlI + IIh hww)11 2h(Nx2h ' ) 1l

Because this is a symmetric problem we know that

(7.1oa) Ilv = (v,Lv)

and that

,-
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(7.1Ob) I h  112 (1hv, LhIh = (v, Y2hLh
S 2 h 2h hv h L2hV

^ 2

v L2hV= v 111 •

Therefore,

11E 11 T 11 +~ YII1M\ 2 WWI i

By the inductive hypotheses (7.8b) we have

(7.11) UJE Ill1 < HT11 a I Il al I2hWdllI

Note: In (7.10b) and in this calculation the symbols 11w1I l  and lllhhWlll

refer to the designated norms on the spaces S2h and Sh

By the basic inequality (7.6b) we have

- jlleIl < 11T,112 + -III w1if2 <ctIE11122h 1

which proves the Lemma.

Since the proof of this lemma is immediate once one understands the

proof of McCormick's lemma 2.2 of [15] one would expect that

.4.
(7.12) = = 

l'

Indeed, this is the case. Direct but messy calculations based on the results

of section 5 yield

,,:lrl~a2m 2m 2m a2m "

(7.13) sup 21+a _ 7 + I+& (1a

_ 1 - ~ (T_+a) !(P±~.) (+
-2 T +a" i

, -", 3""' "- "" ;";"- "'"""" , ''-, ' '-'-"""" '
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Moreover, for all choices of a and m, the supremum is attained at = 1

The corresponding values of ct are displayed in the following table:

Bounds on the Convergence Rate

m\a .333 .5 .667 .75 1 1.333

1 .633 .577 .561 .561 .577 .614

2 .435 .408 .417 .424 .447 .475

3 .336 .335 .349 .357 .378 .403

4 .283 .293 .307 .314 .333 .357

In view of the results of section 6 which demonstrate the complete equiva-

lence of our problem to a related symmetric problem, these upper bounds apply

in our case.

However the estimate a = 1 is only an upper bound for the rate of

convergence of the multigrid iterative scheme. In order to complete our in-

vestigation we have undertaken an experimental project.

A computer program was written with the following capabilities: The user

supplies

p(x), b(x), q(x), f(x), m, a, n, and

M = 1 . 1 = (number of points on the finest grid),

where p(x), b(x), q(x), f(x) are the coefficients of the problems (1.1),

(1.2) and

m = number of applications of the damped Jacobi iteration,

*a = parameter of the damped Jacobi iteration

n = # of grid levels.

..e The user also supplies an initial guess U0 and a tolerance E.

0 en

4* q "w .. w " .* -. *,q- v-.. * ." ~ ' "

- *" * w - -u % "-%ck " % u
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The program then executes multi-grid iterations until the kl norm

[see (7.14a)] of the residual is below the indicated tolerance E . The

program is run in an interactive fashion which allows the user to change

the parameters M, m, a and n

The experiments reported here were run on the VAX 780 in both single

and double precision arithmetic (approximately sixteen decimal digits of

accuracy). The single precision results were qualitatively similar to the

double precision results, however, for increased accuracy, the double pre-

cision results are reported here.

For our present purposes the basic program was modified to enable us

to estimate the "rates of convergence" of the multi-grid iteration. For

each test problem we used a known solution u(x) of the boundary value

problem (1.1), (1.2). Then we computed the exact solution u(x,h) of

the algebraic system (2.4). Then using two norms

(7.14a) lu 91 = hZ  jujl

(7.14b) ull 1  = (u,LhU

r we computed the norms of the error (u-u ) at each iteration. The rate of

convergence was measured by computing

(7.15) el*II i lII

at each iteration i = 1,2,3....

To check that the program was working correctly a number of measures

were taken. The most simplistic was to carry out some of the iterations

by hand and to compare the hand computed calculations to the iterates

, 4,
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generated by the machine. In addition, since the discretization error

is O(h 2), it is not unreasonable to expect that halving the step size

should reduce the final error in u by a factor of four. This property

was checked and found to be true. One of the requirements for 12 h

is that

(7.16) L 1  ]k 012X2 Y, +l.h u] 2k-1

* (by lemma 2.1).

After each coarse to fine grid transfer, formula (7.16) was computed and

checked. Finally, from (5.7b) one sees that the error, e2k(h), on the

even points of the coarsest grid should be zero. This requirement was

also verified after each iteration.

The test problems are best described by giving the choices of p(x),

b(x), q(x) and u(x), the true solution of the differential equation

(.1), (1.2) (which determines f(x)).

As a basic case we took

(7.17a) p(x) = 1, q(x) = b(x) = 0 and u(x) = 0.

This test was merely to be sure the program worked on this simple case.

In addition there were six other problems based on two additional sets

of coefficients p(x), b(x), q(x) and three "solutions" u(x). These

are

(7.17b) p(x) = 1 + sin 47rx, b(x) = 1 + x, q(x) = (sin 5fx) 2

2x/2

(7.17c) p(x) = ex, b(x) = 1 + x 2, q(x) =(-x)e1
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The "solutions" were

(7.18a) ul(X) = x(e-e x )

(7.18b) u2(W = l-x)

(7.18c) u3(x) = sin(14Trx)

. For each problem, test runs were made with a variety of initial guesses.
'a-

After all, the point was to obtain the worst rate of convergence. Each

initial guess consisted of a smooth component

s k r

uk 20 sin wT where M is the number of points on
the finest grid

and a rough component. The rough component was chosen in various ways

in order to have different compositions on the coarser grids. The rough

components of the initial guesses are best described schematically, by

setting

Uk = u + 406k

where 1kl = 1, and the sign of 6k follows the following patterns:

Initial Guess Pattern for k

A + -+-+ -+-+ -+-+ -+.

B + +--++- + +- + +-

(7.19) C + + + + + + - - - + + +

D + +++ + + +- - -

E +-- +++ +++++

'.

-..--
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Runs were made with a, the damped Jacobi parameter, equal to

.333, .5, .667, .75, 1.0, 1.333, while m, the number of smoothing

iterations, ran from one to four and the number of grid layers varied from

two to five. For each test problem, the program stopped when the discrete

z norm of the residual vector was less than .00005. The most recently

computed rate of convergence.

F- f fi nal 1I kl
II Ffinal-1 II I

was computed and recorded in Tables III-VI.

The theoretical rate for a two grid iteration scheme was computed from

Theorem 5.1 and Theorem 5.2 by solving for the maximum of

F(j) [+a)2m 0a
"' --2 ljl+a-J (l ) + a+i , - I

and

lp)= 1 T'+m + l+alT l -2

using Newton's method. Table I exhibits (max F(p)) )  (a predicted rate of
convergence) as a function of m and a. The value of ii at which the

maximum of F() occurred can be found in Table '

'pi
-pp
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Table I

Predicted Rate Based on F(p)

m\a .333 .500 .667 .750 1.000 1.333

1 .500 .333 .400 .429 .500 .571

2 .260 .248 .261 .268 .289 .331

3 .200 .206 .217 .223 .238 .258

4 .171 .180 .190 .195 .208 .225

Table '
I.

Damped Jacobi Parameter-,,

m\a .333 .500 .667 .750 1.000 1.333

1 1 0 0 0 0 0
2 .883 .707 .666 .650 .577 .370

3 .833 .786 .762 .750 .714 .661

4 .857 .833 .814 .811 .777 .741
I

Table II exhibits (max FI(I)) (a better rate of convergence) as a function

of m and a. The value of l. at which the maximum of F1 (ii) occurred

can be found in Table II'.

Table II

Predicted Rate Based on F(i)

m\a .333 .500 .667 .750 1.000 1.333

1 .500 .333 .400 .429 .500 .572

2 .250 .111 .160 .184 .250 .326

3 .125 .078 .088 .093 .125 .187

4 .068 .062 .068 .072 .083 .109

4.



Table III

*Damped Jacobi --- mt-'-

m\a .333 .500 .667 .750 1.000 1.333

1 1 0 0 0 0 0
2 1 0 0 0 0 0

3 1 .612 .577 .530 0 0

4 .883 .707 .667 .650 .577 .370

Tables III through VI contain the worst rate of convergence found

.4 experimentally as measured in the Z. norm.
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Table III

Worst case, 2-grids
S

m\a .333 .5 .667 .75 1.0 1.333

1 .499 (a) .333 (b) .400 (b) .429(b) .500 (b) .571(b)

2 .250 (c) .111 (b )  .160 (b) .184 (b) .250(b) .327 (b )

3 .124 (c) .075 (b) .087 (d) .093(e) .125 (b)  .187 (b)

4 .063(a) .062 f . 0 68 (g) . 0 71 (h) .082(e) .07()

Table IV

Worst case, 3-grids ...

m\a .333 .5 .667 .75 1.0 1.333

S .499(c) .333(b) .400 (b) .42 9(b) .500(b) (b)

2 250 (c) . 1 65 (g) . 1 92(g) .210(g) .267 .337(g)

3 .124 (c )  .099(k) .116 (k)  .124 (k)  .170 (g) .210(g )

4 .087(J) .079 (J) .087(j) .092(J )  .130(k) .141(g )

Table V

Worst case, 4-grids

m\a .333 .5 .667 .75 1.0 1.333

1 .49 9(c) .333(b) 
b)  . 42 9 (b) .500 (b) .571(b)

.250 (c) .190 (m)  .201 .212 (J)  .267(q )  .337 (q )

3 . 12 4 (c) .121 ( m)  . 1 36 (J) .145(J) .17 0 (i) .214(J)

4 .095 (i)  .095 (I)  .1040 )  .111 (i)  .130 (i) .157 (i)

9.e

P#

:' w¢ ' ,' ."WS ; ;, ,,,%.- ,,,q-'., ";*' ' ".j ,2.Z'- ,..',,"'. . ",.;;'".',';.-'
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Table VI

- Worst case, 5-grids

m\a .333 .5 .667 .75 1.0 1.333

1 .499(c) .333(b) .400(b) .429(b) .500(b) .571
" 2 .250(c) .209(0) .221 (o) .222 (k) .268 (k) .337(g)

3 .124(c) .134(0) .148(o) .148 (q) .175 (k) .21 (k)

4 .098(n) 98 (  .1 . 1 11  .131(k) .160 (

The letters in the above tables correspond to the choices of coefficients,

"solutions", and patterns for rough components in the initial guess [see

(7.17), (7.18), (7.19)] displayed in Table VII.

Concluding Remarks

As can be seen from the computational results, no particular choice of

problem or initial guess always resulted in giving the worst case. Moreover,

it appears that at_ a is an upper bound on the rate of convergence of the

. multigrid scheme but does not yield the exact rate of convergence. Notice

that there seems to be no degradation for m = 1. However, as m increases

we find some degradation in the rate of convergence. But, it appears to be

quite less than a- - a

.J

."

.* .'.,
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Table VII

Worst Case Problems

Pattern for
Problem Coefficients "Solution" a in initial guess

a 7.17b x(e-e x) B

b 7.17c sin (1 47rx) B
"-'.- 5/2

c 7.17b x (-x) C

d 7.17c sin(14Trx) C

e 7.17b x(e-e x) C

.. f 7.17c x(e-e x )  D

g 7.17a 0 D

h 7.17c x(e-e x ) D
.. Ia.

i 7.17c sin (I 4rx) E

j 7.17a 0 E

k 7.17b x(e-ex) E
*5/2

-/7.17c 2(l-x) A

m 7.17a 0 Eo

n 7.17c x5/2 (l-x) C

0 7.17b x(e-e x ) A

p 7.17c x(e-e x  A

q 7.17b sin(147rx) A

-'f .
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